You are here

Assessing Sentiment of Text by Semantic Dependency and Contextual Valence Analysis

TitleAssessing Sentiment of Text by Semantic Dependency and Contextual Valence Analysis
Publication TypeBook Chapter
Year of Publication2007
AuthorsShaikh, MAM, Prendinger, H, Mitsuru, I
EditorPaiva, A, Prada, R, Picard, R
Book TitleAffective Computing and Intelligent Interaction
Series TitleLecture Notes in Computer Science
CityBerlin / Heidelberg
ISBN Number978-3-540-74888-5

Text is not only an important medium to describe facts and events, but also to effectively communicate information about the writer’s (positive or negative) sentiment underlying an opinion, and an affect or emotion (e.g. happy, fearful, surprised etc.). We consider sentiment assessment and emotion sensing from text as two different problems, whereby sentiment assessment is a prior task to emotion sensing. This paper presents an approach to sentiment assessment, i.e. the recognition of negative or positive sense of a sentence. We perform semantic dependency analysis on the semantic verb frames of each sentence, and apply a set of rules to each dependency relation to calculate the contextual valence of the whole sentence. By employing a domain-independent, rule-based approach, our system is able to automatically identify sentence-level sentiment. Empirical results indicate that our system outperforms another state-of-the-art approach.